如果说去年一年是自媒体的狂欢,还可以利用信息差赚知识付费和咨询费,那今年在技术普及已经差不多了,就要面对落地的挑战了,否则大多数人该怀疑这又是一场泡沫了,最近一个月,我自己的身份也从纯研发角色侧重为产品,虽然代码还在写,但关注重点不一样了,这篇文章我将从这一个月来的实践和调研的情况出发,尝试从个人角度阐述对 AI 产品经理的能力理解,以及对当下 toC 和 toB AI 产品落地现状的一些思考,欢迎大家一起探讨。
阅读更多
如果说去年一年是自媒体的狂欢,还可以利用信息差赚知识付费和咨询费,那今年在技术普及已经差不多了,就要面对落地的挑战了,否则大多数人该怀疑这又是一场泡沫了,最近一个月,我自己的身份也从纯研发角色侧重为产品,虽然代码还在写,但关注重点不一样了,这篇文章我将从这一个月来的实践和调研的情况出发,尝试从个人角度阐述对 AI 产品经理的能力理解,以及对当下 toC 和 toB AI 产品落地现状的一些思考,欢迎大家一起探讨。
轻装上阵,加速商业化,LangChain 0.1 预发布看点
LangChain 在 0.1 版本发生了重要变更,官方还专门发了一篇博客,总体看下来可以概括为聚焦核心,共建生态,轻装上阵,加速商业化,我也在第一时间向官方申请试用了商业化产品,本篇文章从 LangChain 变更情况解读,商业化产品试用,以及类 LangChain 的 LLM 应用开发框架的发展三部分来谈谈。
OpenAI Function Calling 特性有什么用
OpenAI最近发布了一次更新,3.5可以支持16k的token,更新了gpt-3.5-turbo-0613 和 gpt-4-0613两个模型,同时这两个模型在chat completion的api中增加了一个叫 Function Calling 的新功能,本篇文章对其功能进行探究,并分析其作用。
AutoGPT、BabyAGI、CAMEL与Generative Agents的区别与联系(翻译)
最近关于 AIGC 的热点新闻中,出现了许多以 Agent 方式使用 LLM 的项目,像 AutoGPT、BabyAGI、CAMEL 和 Generative Agents 这样的项目获得极大关注。笔者在研究和借助 LangChain 社区工具实现过这些项目之后,试图简单谈谈它们之间的区别以及每个项目的特性。