如何评估一个RAG(检索增强生成)系统

写这篇文章的原因是我构建的 RAG 框架已经基本成型,现在只剩下最后一块拼图,即评估模块,这也是真正投入生产后,RAG 系统迭代的关键,本篇文章我将分享 3 种方案,第一种我自己跑出来的实践经验,第二种是比较成熟的框架 RAGAs,通过定量指标来评估,最后一种是则是通过噪声、拒答、反事实、信息整合等四大指标来定性分析,来自论文《在 RAG 中对大语言模型进行基准测试》,大家可以结合起来设计自己的方案。

本文首发自博客文章 如何评估一个RAG(检索增强生成)系统

阅读更多

一种基于滑动窗口扩展上下文的RAG优化实现方案探索

RAG(检索增强生成)是一种结合了检索(通常是知识库或数据库)和生成模型(大语言模型)的技术,目的是在生成文本的时候能够参考相关的外部知识。这样,即使生成模型在训练时没有看到某些信息,它也能在生成时通过检索到的知识来生成更加准确和丰富的回答,这篇文章实现一种基于动态上下文窗口的方案,能够处理大规模文档,保留重要的上下文信息,提升检索效率,同时保持灵活性和可配置性。

阅读更多

如何利用 instructor 提高 RAG 的准确性和召回率

RAG(Retrieval Augmented Generation)是一种检索增强生成技术,它利用大型语言模型来处理用户查询,RAG 技术的主要组成包括数据提取—embedding—创建索引—检索—排序(Rerank)—LLM 归纳生成,不过实际落地过程来看,将用户查询转换为嵌入向量直接检索,很多时候的结果在相关度方面没有那么理想,本篇分享一种对用户查询进行重写再去进行检索从而提高准确性和召回率的方案。

阅读更多

Embedding 嵌入知识入门

文本嵌入是一种将文本这种离散数据映射到连续向量空间的方法,嵌入技术可以将高维的离散数据降维到低维的连续空间中,并保留数据之间的语义关系,从而方便进行机器学习和深度学习的任务。

阅读更多