基于大模型的 Agent 基本组成应该包含规划(planning),工具(Tools),执行(Action),和记忆(Memory)四个方面,上一篇中重点讲了进行长记忆管理的 8 种方案,本节将从 Agent 的概念、ReAct 框架、示例、以及一些论文思路来具体聊下任务规划的话题,同时会辅以代码帮助理解,欢迎大家一起探讨。
基于大模型的 Agent 基本组成应该包含规划(planning),工具(Tools),执行(Action),和记忆(Memory)四个方面,上一篇中重点讲了进行长记忆管理的 8 种方案,本节将从 Agent 的概念、ReAct 框架、示例、以及一些论文思路来具体聊下任务规划的话题,同时会辅以代码帮助理解,欢迎大家一起探讨。
如果说去年一年是自媒体的狂欢,还可以利用信息差赚知识付费和咨询费,那今年在技术普及已经差不多了,就要面对落地的挑战了,否则大多数人该怀疑这又是一场泡沫了,最近一个月,我自己的身份也从纯研发角色侧重为产品,虽然代码还在写,但关注重点不一样了,这篇文章我将从这一个月来的实践和调研的情况出发,尝试从个人角度阐述对 AI 产品经理的能力理解,以及对当下 toC 和 toB AI 产品落地现状的一些思考,欢迎大家一起探讨。
大模型时代,程序员如何实现自我成长?——一名普通开发者的 ChatGPT 一周年记
ChatGPT 发布一周年了,切实改变了我的工作方式和职业路径,趁着周末写下这篇文章,我希望以一名普通程序员的视角,带大家回顾一下过去一年大模型领域的发展情况,以及个人的所思所想。文章会分为四个部分,从初次接触 ChatGPT 沉迷追 AI 新闻,到开始亲身实践,利用 LLM 进行一些有价值的工作,然后以开发者视角总结一年来大模型各个层面的发展,标志性的开源项目、基础模型服务商、中间层、以及体验不错的 LLM 产品,最后还想再浅谈一下对 AI 未来的一些展望!
LLMs 应用开发框架 Semantic Kernel 和 LangChain 比较
Semantic Kernel 和 LangChain 是当前比较受欢迎的两款 LLMs 应用开发框架,笔者通过实现一个支持联网功能的智能 AI 助手来比较分析下两个框架的差异(适合自己场景的工具才是最好滴 🧑🏻💻)
RAG(检索增强生成)是一种结合了检索(通常是知识库或数据库)和生成模型(大语言模型)的技术,目的是在生成文本的时候能够参考相关的外部知识。这样,即使生成模型在训练时没有看到某些信息,它也能在生成时通过检索到的知识来生成更加准确和丰富的回答,这篇文章实现一种基于动态上下文窗口的方案,能够处理大规模文档,保留重要的上下文信息,提升检索效率,同时保持灵活性和可配置性。
最近看到的一个开源的提示词编排平台bisheng,音同「毕昇」,项目介绍说 「“毕昇”是活字印刷术的发明人,活字印刷术为人类知识的传递起到了巨大的推动作用。我们希望“毕昇”同样能够为智能应用的广泛落地提供有力的支撑」。看了下团队团队前身为国内人工智能独角兽企业第四范式的智能文档产品事业部,后根据发展需要进行业务独立拆分与运营,专注于非结构化数据的价值挖掘、信息处理自动化与数据即服务,第四范式在 AI 行业深耕多年,我比较期待能在这个项目里看到一些企业落地实践,所以阅读了毕昇平台的源码,写篇文章分享下。
如何利用 instructor 提高 RAG 的准确性和召回率
RAG(Retrieval Augmented Generation)是一种检索增强生成技术,它利用大型语言模型来处理用户查询,RAG 技术的主要组成包括数据提取—embedding—创建索引—检索—排序(Rerank)—LLM 归纳生成,不过实际落地过程来看,将用户查询转换为嵌入向量直接检索,很多时候的结果在相关度方面没有那么理想,本篇分享一种对用户查询进行重写再去进行检索从而提高准确性和召回率的方案。
在之前的文章中提到构建适合生产环境的 LLM(大型语言模型)应用挑战非常多,比如提示词的迭代、回归测试、评估等,agenta 就是一款很好的解决上述问题的工具。能够进行提示词版本控制、实验和评估,可以一键通过 API 的方式发布给开发人员接入使用,并且兼容常用的各种框架、库和模型,达到快速进行提示工程的目的,同时满足开发人员和领域专家的需求,虽然还处于 alpha 阶段,但已经成为我重度使用的提示词管理工具,本篇文章对其进行详细介绍。
Helicone 是一个开源的 LLM 应用可观测性平台,用于记录所有请求到 OpenAI 的日志,并提供用户友好的 UI 界面、缓存、自定义速率限制和重试等功能。它可以通过用户和自定义属性跟踪成本和延迟,并为每个请求提供一个调试环境(playground),以在 UI 中迭代提示和聊天对话内容。此外,Helicone 还提供了 Python 和 Node.JS 支持,以及开发者文档和社区支持。该项目已入选 YC W23(Y Combinator 2023冬季批次加速器计划)。本篇我将对 Helicone 具备的一些关键能力进行说明。
当大模型成本逐渐降低,可靠性提升后,越来越多的业务应用将与LLM结合。为此,需要开发结合内部基础设施的SDK,更友好的prompt管理工具,能够快速构建RAG相关概念证明的平台。总之,需要一些封装好的框架快速调试应用,以支撑LLM应用开发的快速开发。