LIama 3 是大模型游戏规则改写者吗|莫尔索随笔 Vol.3

LIama 3 的影响还在持续,仅仅一周,社区已经冒出来超过 100 多个 LIama 3 微调和其他周边项目,Github 上的 AI 领域热门项目已经第一时间支持了 LIama 3,LIama 3 让企业低成本使用高质量模型成为可能。本期包括 3 篇论文分享、5 篇工程实践案例、3 条产品 tips 和两条市场信息,内容包括万字长文带你了解 Llama 模型生态的前世今生,如何提升 RAG 在领域专业知识上的准确性,AI Agent 的最新实现进展盘点,以及在实践中如何评估 LLM 产品,如何提高 AI 产品设计体验;最后对 ChatGPT 跨对话保持长期记忆的新特性进行解读,同时送上一份 Hume.AI 出品的语义空间理论,如何科学的测量和理解情感,做到让 AI 分析你的情绪,并根据你的情绪进行回答。
阅读更多

开源模型与闭源模型之间的差距有多大?|莫尔索随笔 Vol.2

开源模型部署需要的硬件配置,16 位浮点精度(FP16)的模型,推理所需显存(以 GB 为单位)约为模型参数量(以 10 亿 为单位)的两倍,据此,Llama 3 7B(70 亿)对应需要约 14GB 显存以进行推理(以普通家用计算机的硬件规格作为参考,一块 GeForce RTX 4060 Ti 16GB 显卡市场价超过 3000 元)。模型量化(quantization)技术可以很大程度上降低显存要求,以 4-bit 量化为例,其将原本 FP16 精度的权重参数压缩为 4 位整数精度,使模型权重体积和推理所需显存均大幅减小,仅需 FP16 的 1/4 至 1/3,意味着约 4GB 显存即可启动 7B 模型的推理(实际显存需求会随着上下文内容叠加而不断增大)...
阅读更多

你支持AI“复活”逝者吗|莫尔索随笔 Vol.1

前段时间,音乐人包小柏用 AI 重现女儿的声音和形象,商汤科技创始人汤晓鸥被公司以数字人的形式现身年会,“AI 复活”走入现实。然而“AI 复活”展现出来的科技人文关怀,没几天就变味了。多位已故明星李玟、乔任梁、高以翔被“复活”,登上微博热搜,但这些网友擅自的复活遭到了明星亲属的极力反对,关于AI“复活”逝者,你怎么看?
阅读更多